14:46 0 comentarios

Regla de Bayes


La regla de Bayes es un caso especial de la probabilidad condicional que se aplica cuando se desea calcular la probabilidad condicional de un evento que ocurrió primero dado lo que ocurrió después. Para llegar a establecer tan útil regla vamos a estudiar una proposición previa.




14:24 0 comentarios

Axiomas de Probabilidad


Los axiomas de probabilidad son las condiciones mínimas que deben verificarse para que una función que definimos sobre unos sucesos determine consistentemente valores de probabilidad sobre dichos sucesos.

La probabilidad P de un suceso E, denotada por P(E), se define con respecto a un "universo" o espacio muestral Ω, conjunto de todos los posibles sucesos elementales, tal que P verifique los Axiomas de Kolmogórov, enunciados por el matemático ruso de este nombre en 1933. En este sentido, el suceso E es, en términos matemáticos, un subconjunto de Ω.




Axiomas de Kolmogórov


Dado un conjunto de sucesos elementales, Ω, sobre el que se ha definida una σ-álgebra (léase sigma-álgebra) σ de subconjuntos de Ω y una función P que asigna valores reales a los miembros de σ, a los que denominamos "sucesos", diremos que P es una probabilidad sobre (Ω,σ) si se cumplen los siguientes tres axiomas.






En términos más formales, una probabilidad es una medida sobre una σ-álgebra de subconjuntos del espacio muestral, siendo los subconjuntos miembros de la σ-álgebra los sucesos y definida de tal manera que la medida del total sea 1. Tal medida, gracias a su definición matemática, verifica igualmente los tres axiomas de Kolmogórov. A la terna formada por el espacio muestral, la σ-álgebra y la función de probabilidad se la denomina Espacio probabilístico, esto es, un "espacio de sucesos" (el espacio muestral) en el que se han definido los posibles sucesos a considerar (la σ-álgebra) y la probabilidad de cada suceso (la función de probabilidad).




14:20 1 comentarios

Analisis Combinatorio

Es la rama de la matemática que estudia los diversos arreglos o selecciones que podemos formar con los elementos de un conjunto dado, los cuales nos permite resolver muchos problemas prácticos. Por ejemplo podemos averiguar cuántos números diferentes de teléfonos , placas o loterías se pueden formar utilizando un conjunto dado de letras y dígitos.

Además el estudio y comprensión del análisis combinatorio no va ha servir de andamiaje para poder resolver y comprender problemas sobre probabilidades

Principios fundamentales del Análisis Combinatorio:
En la mayoría de los problemas de análisis combinatorio se observa que una operación o actividad aparece en forma repetitiva y es necesario conocer las formas o maneras que se puede realizar dicha operación. Para dichos casos es útil conocer determinadas técnicas o estrategias de conteo que facilitarán el cálculo señalado.

El análisis combinatorio también se define como una manera práctica y abreviada de contar; las operaciones o actividades que se presentan son designadas como eventos o sucesos.

Ejemplo :


Señalar las maneras diferentes de vestir de una persona, utilizando un número determinado de prendas de vestir


Ordenar 5 artículos en 7 casilleros


Contestar 7 preguntas de un examen de 10


Designar 5 personas de un total 50 para integrar una comisión


Sentarse en una fila de 5 asientos 4 personas


Escribir una palabra de 7 letras utilizando 4 consonantes y 3 vocales


I) Principio de multiplicación :

Si un evento o suceso "A" puede ocurrir , en forma independiente, de "m" maneras diferentes y otro suceso de "n" maneras diferentes, entonces el número de maneras distintas en que pueden suceder ambos sucesos es "m . n"

Ejemplo 1:

En la etapa final de fútbol profesional de primera, cuatro equipos : CRISTAL ( C ), BOYS ( B) ,ESTUDIANTES ( E ), UNIVERSITARIO (U), disputan el primer y segundo lugar (campeón y subcampeón). ¿De cuántas maneras diferentes estos equipos pueden ubicarse en dichos lugares?

Solución :

METODO 1: utilizando el diagrama del árbol
1er lugar 2do lugar 1o 2o


Existen 12 maneras diferentes en que estos equipos se pueden ubicarse en el primer y segundo lugar

METODO 2: Utilizando el principio de multiplicación

1o 2o

4 x 3

# maneras = 12

Ejemplo 2:

¿Cuántas placas para automóviles pueden hacerse si cada placa consta de dos letras diferentes seguidas de tres dígitos diferentes? (considerar 26 letras del alfabeto)

Solución :


letras Dígitos

26 x 25 x 10 x 9 x 8

# placas = 468 000

II) Principio de adición :


Supongamos que un evento A se puede realizar de "m" maneras y otro evento B se puede realizar de "n" maneras diferentes, además, no es posible que ambos eventos se realicen juntos (AÇ B = Æ ), entonces el evento A o el evento B se realizarán de ( m + n) maneras.

Ejemplo 1:

Un repuesto de automóvil se venden en 6 tiendas en la Victoria o en 8 tiendas de Breña.¿De cuántas formas se puede adquirir el repuesto?

Solución :

Por el principio de adición:
Victoria ó Breña

6 formas + 8 formas = 14 formas

Ejemplo 2:

Se desea cruzar un río, para ello se dispone de 3 botes, 2 lanchas y 1 deslizador. ¿De cuantas formas se puede cruzar el río utilizando los medios de transporte señalados?

Solución :

Aplicando el principio de adición se tiene:
Bote , lancha , deslizador

3 ó 2 ó 1

# maneras = 3 + 2 + 1 = 6
12:38 0 comentarios

Técnicas de Conteo

Si el número de posibles resultados de un experimento es pequeño, es relativamente fácil listar y contar todos los posibles resultados. Al tirar un dado, por ejemplo, hay seis posibles resultados.

Si, sin embargo, hay un gran número de posibles resultados tales como el número de niños y niñas por familias con cinco hijos, sería tedioso listar y contar todas las posibilidades.

Las posibilidades serían, 5 niños, 4 niños y 1 niña, 3 niños y 2 niñas, 2 niños y 3 niñas, etc. Para facilitar el conteo examinaremos tres técnicas: La técnica de la multiplicación, la técnica de la permutación, y la técnica de la combinación.

La Técnica de la Multiplicación

La técnica de la multiplicación: Si hay m formas de hacer una cosa y hay n formas de hacer otra cosa, hay m x n formas da hacer ambas cosas

En términos de fórmula

Número total de arreglos = m x n

Esto puede ser extendido a más de dos eventos. Para tres eventos, m, n, y o:

Número total de arreglos = m x n x o

Ejemplo:

Un vendedor de autos quiere presentar a sus clientes todas las diferentes opciones con que cuenta: auto convertible, auto de 2 puertas y auto de 4 puertas, cualquiera de ellos con rines deportivos o estándar. ¿Cuántos diferentes arreglos de autos y rines puede ofrecer el vendedor?

Para solucionar el problema podemos emplear la técnica de la multiplicación, (donde m es número de modelos y n es el número de tipos de rin).

Número total de arreglos = 3 x 2

No fue difícil de listar y contar todos los posibles arreglos de modelos de autos y rines en este ejemplo. Suponga, sin embargo, que el vendedor tiene para ofrecer ocho modelos de auto y seis tipos de rines. Sería tedioso hacer un dibujo con todas las posibilidades. Aplicando la técnica de la multiplicación fácilmente realizamos el cálculo:

Número total de arreglos = m x n = 8 x 6 = 48

La Técnica de la Permutación


Como vimos anteriormente la técnica de la multiplicación es aplicada para encontrar el número posible de arreglos para dos o más grupos. La técnica de la permutación es aplicada para encontrar el número posible de arreglos donde hay solo u grupo de objetos. Como ilustración analizaremos el siguiente problema: Tres componentes electrónicos - un transistor, un capacitor, y un diodo - serán ensamblados en una tablilla de una televisión. Los componentes pueden ser ensamblados en cualquier orden. ¿De cuantas diferentes maneras pueden ser ensamblados los tres componentes?

Las diferentes maneras de ensamblar los componentes son llamadas permutaciones, y son las siguientes: T D C D T C C D T T C D D C T C T D

Permutación: Todos los arreglos de r objetos seleccionados de n objetos posibles

La fórmula empleada para contar el número total de diferentes permutaciones es:

n P r = n!

(n – r )!
Donde:

nPr es el número de permutaciones posible n es el número total de objetos r es el número de objetos utilizados en un mismo momento

n P r = n! = 3! = 3 x 2 = 6

(n – r )! ( 3 – 3 )! 1
Ejemplo:

Suponga que hay ocho tipos de computadora pero solo tres espacios disponibles para exhibirlas en la tienda de computadoras. ¿De cuantas maneras diferentes pueden ser arregladas las 8 máquinas en los tres espacios disponibles?

n P r = n! = 8! = 8! = 336

(n – r )! ( 8 – 3 )! 5!
En el análisis anterior los arreglos no presentan repeticiones, es decir, no hay dos espacios disponibles con el mismo tipo de computadora. Si en los arreglos se permite la repetición, la fórmula de permutaciones es la siguiente:

n Pr = nr

Para ilustrar el punto, queremos saber ¿cuántas series de 2 letras se pueden formar con las letras A, B, C, si se permite la repetición? Las permutaciones son las siguientes:

AA, AB, AC, BA, CA, BB, BC, CB, CC

Usando la fórmula:

n Pr = nr = 3P2 = 32 = 9

La Técnica de la Combinación

En una permutación, el orden de los objetos de cada posible resultado es diferente. Si el orden de los objetos no es importante, cada uno de estos resultados se denomina combinación. Por ejemplo, si se quiere formar un equipo de trabajo formado por 2 personas seleccionadas de un grupo de tres (A, B y C). Si en el equipo hay dos funciones diferentes, entonces si importa el orden, los resultados serán permutaciones. Por el contrario si en el equipo no hay funciones definidas, entonces no importa el orden y los resultados serán combinaciones. Los resultados en ambos casos son los siguientes:

Permutaciones: AB, AC, BA, CA, BC, CB

Combinaciones: AB, AC, BC

Combinaciones: Es el número de formas de seleccionar r objetos de un grupo de n objetos sin importar el orden.

La fórmula de combinaciones es:

n C r = n!
r! (n – r )!

Ejemplo: En una compañía se quiere establecer un código de colores para identificar cada una de las 42 partes de un producto. Se quiere marcar con 3 colores de un total de 7 cada una de las partes, de tal suerte que cada una tenga una combinación de 3 colores diferentes. ¿Será adecuado este código de colores para identificar las 42 partes del producto?

Usando la fórmula de combinaciones:

n C r = n! = 7! = 7! = 35

r! (n – r )! 3! ( 7 – 3 )! 3! 4!
El tomar tres colores de 7 posibles no es suficiente para identificar las 42 partes del producto.
17:46 7 comentarios

Aplicaciones de la Probabilidad


La probabilidad constituye un importante parametro en la determinación de las diversas causalidades obtenidas tras una serie de eventos esperados dentro de un rango estadístico.

Existen diversas formas como método abstracto, como la teoría Dempster-Shafer y la teoría de la relatividad numérica, esta última con un alto grado de aceptación si se toma en cuenta que disminuye considerablemente las posibilidades hasta un nivel mínimo ya que somete a todas las antiguas reglas a una simple ley de relatividad. Así mismo es la parte de lae.


Dos aplicaciones principales de la teoría de la probabilidad en el día a día son en el análisis de riesgo y en el comercio de los mercados de materias primas. Los gobiernos normalmente aplican métodos probabilísticos en regulación ambiental donde se les llama "análisis de vías de dispersión", y a menudo miden el bienestar usando métodos que son estocásticos por naturaleza, y escogen qué proyectos emprender basándose en análisis estadísticos de su probable efecto en la población como un conjunto. No es correcto decir que la estadística está incluida en el propio modelado, ya que típicamente los análisis de riesgo son para una única vez y por lo tanto requieren más modelos de probabilidad fundamentales, por ej. "la probabilidad de otro 11-S". Una ley de números pequeños tiende a aplicarse a todas aquellas elecciones y percepciones del efecto de estas elecciones, lo que hace de las medidas probabilísticas un tema político.

Un buen ejemplo es el efecto de la probabilidad percibida de cualquier conflicto generalizado sobre los precios del petróleo en Oriente Medio - que producen un efecto dominó en la economía en conjunto. Un cálculo por un mercado de materias primas en que la guerra es más probable en contra de menos probable probablemente envía los precios hacia arriba o hacia abajo e indica a otros comerciantes esa opinión. Por consiguiente, las probabilidades no se calculan independientemente y tampoco son necesariamente muy racionales. La teoría de las finanzas conductuales surgió para describir el efecto de este pensamiento de grupo en el precio, en la política, y en la paz y en los conflictos.

Se puede decir razonablemente que el descubrimiento de métodos rigurosos para calcular y combinar los cálculos de probabilidad ha tenido un profundo efecto en la sociedad moderna. Por consiguiente, puede ser de alguna importancia para la mayoría de los ciudadanos entender cómo se cálculan los pronósticos y las probabilidades, y cómo contribuyen a la reputación y a las decisiones, especialmente en una democracia.

Otra aplicación significativa de la teoría de la probabilidad en el día a día es en la fiabilidad. Muchos bienes de consumo, como los automóviles y la electrónica de consumo, utilizan la teoría de la fiabilidad en el diseño del producto para reducir la probabilidad de avería. La probabilidad de avería también está estrechamente relacionada con la garantía del producto.

Se puede decir que no existe una cosa llamada probabilidad. También se puede decir que la probabilidad es la medida de nuestro grado de incertidumbre, o esto es, el grado de nuestra ignorancia dada una situación. Por consiguiente, puede haber una probabilidad de 1 entre 52 de que la primera carta en un baraja de cartas es la J de diamantes. Sin embargo, si uno mira la primera carta y la reemplaza, entonces la probabilidad es o bien 100% o 0%, y la elección correcta puede ser hecha con precisión por el que ve la carta. La física moderna proporciona ejemplos importantes de situaciones determinísticas donde sólo la descripción probabilística es factible debido a información incompleta y la complejidad de un sistema así como ejemplos de fenómenos realmente aleatorios.

En un universo determinista, basado en los conceptos newtonianos, no hay probabilidad si se conocen todas las condiciones. En el caso de una ruleta, si la fuerza de la mano y el periodo de esta fuerza es conocido, entonces el número donde la bola parará será seguro. Naturalmente, esto también supone el conocimiento de la inercia y la fricción de la ruleta, el peso, lisura y redondez de la bola, las variaciones en la velocidad de la mano durante el movimiento y así sucesivamente. Una descripción probabilística puede entonces ser más práctica que la mecánica newtoniana para analizar el modelo de las salidas de lanzamientos repetidos de la ruleta. Los físicos se encuentran con la misma situación en la teoría cinética de los gases, donde el sistema determinístico en principio, es tan complejo (con el número de moléculas típicamente del orden de magnitud de la constante de Avogadro ) que sólo la descripción estadística de sus propiedades es viable.

La mecánica cuántica, debido al principio de indeterminación de Heisenberg, sólo puede ser descrita actualmente a través de distribuciones de probabilidad, lo que le da una gran importancia a las descripciones probabilísticas. Algunos científicos hablan de la expulsión del paraíso. Otros no se conforman con la pérdida del determinismo. Albert Einstein comentó estupendamente en una carta a Max Born: Jedenfalls bin ich überzeugt, daß der Alte nicht würfelt. (Estoy convencido de que Dios no tira el dado). No obstante hoy en día no existe un medio mejor para describir la física cuántica si no es a través de la teoría de la probabilidad. Mucha gente hoy en día confunde el hecho de que la mecánica cuántica se describe a través de distribuciones de probabilidad con la suposición de que es por ello un proceso aleatorio, cuando la mecánica cuántica es probabilística no por el hecho de que siga procesos aleatorios sino por el hecho de no poder determinar con precisión sus parámetros fundamentales, lo que imposibilita la creación de un sistema de ecuaciones determinista.
17:29 0 comentarios

Probabilidad


La probabilidad mide la frecuencia con la que se obtiene un resultado (o conjunto de resultados) al llevar a cabo un experimento aleatorio, del que se conocen todos los resultados posibles, bajo condiciones suficientemente estables. La teoría de la probabilidad se usa extensamente en áreas como la estadística, la matemática, la ciencia y la filosofía para sacar conclusiones sobre la probabilidad de sucesos potenciales y la mecánica subyacente de sistemas complejos.

La palabra probabilidad no tiene una definición consistente. De hecho hay dos amplias categorías de interpretaciones de la probabilidad: los frecuentistas hablan de probabilidades sólo cuando se trata de experimentos aleatorios bien definidos. La frecuencia relativa de ocurrencia del resultado de un experimento, cuando se repite el experimento, es una medida de la probabilidad de ese suceso aleatorio. Los bayesianos, no obstante, asignan las probabilidades a cualquier declaración, incluso cuando no implica un proceso aleatorio, como una manera de representar su verosimilitud subjetiva.

El estudio científico de la probabilidad es un desarrollo moderno. Los juegos de azar muestran que ha habido un interés en cuantificar las ideas de la probabilidad durante milenios, pero las descripciones matemáticas exactas de utilidad en estos problemas sólo surgieron mucho después.

Según Richard Jeffrey, "Antes de la mitad del siglo XVII, el término 'probable' (en latín probable) significaba aprobable, y se aplicaba en ese sentido, unívocamente, a la opinión y a la acción. Una acción u opinión probable era una que las personas sensatas emprenderían o mantendrían, en las circunstancias."

Aparte de algunas consideraciones elementales hechas por Girolamo Cardano en el siglo XVI, la doctrina de las probabilidades data de la correspondencia de Pierre de Fermat y Blaise Pascal (1654). Christiaan Huygens (1657) le dio el tratamiento científico conocido más temprano al concepto. Ars Conjectandi (póstumo, 1713) de Jakob Bernoulli y Doctrine of Chances (1718) de Abraham de Moivre trataron el tema como una rama de las matemáticas. Véase El surgimiento de la probabilidad (The Emergence of Probability) de Ian Hacking para una historia de los inicios del desarrollo del propio concepto de probabilidad matemática.

La teoría de errores puede trazarse atrás en el tiempo hasta Opera Miscellanea (póstumo, 1722) de Roger Cotes, pero una memoria preparada por Thomas Simpson en 1755 (impresa en 1756) aplicó por primera vez la teoría para la discusión de errores de observación. La reimpresión (1757) de esta memoria expone los axiomas de que los errores positivos y negativos son igualmente probables, y que hay ciertos límites asignables dentro de los cuales se supone que caen todos los errores; se discuten los errores continuos y se da una curva de la probabilidad.
17:11 0 comentarios

Medidas de Dispersión

Estudia la distribución de los valores de la serie, analizando si estos se encuentran más o menos concentrados, o más o menos dispersos.

Existen diversas medidas de dispersión, entre las más utilizadas podemos destacar las siguientes:

1.- Rango: mide la amplitud de los valores de la muestra y se calcula por diferencia entre el valor más elevado y el valor más bajo.

2.- Varianza: Mide la distancia existente entre los valores de la serie y la media. Se calcula como sumatorio de las difrencias al cuadrado entre cada valor y la media, multiplicadas por el número de veces que se ha repetido cada valor. El sumatorio obtenido se divide por el tamaño de la muestra.
La varianza siempre será mayor que cero. Mientras más se aproxima a cero, más concentrados están los valores de la serie alrededor de la media. Por el contrario, mientras mayor sea la varianza, más dispersos están.

3.- Desviación típica: Se calcula como raíz cuadrada de la varianza.

4.- Coeficiente de variación de Pearson: se calcula como cociente entre la desviación típica y la media.

Ejemplo: vamos a utilizar la serie de datos de la estatura de los alumnos de una clase (lección 2ª) y vamos a calcular sus medidas de dispersión.
1.- Rango: Diferencia entre el mayor valor de la muestra (1,30) y el menor valor (1,20). Luego el rango de esta muestra es 10 cm.

2.- Varianza: recordemos que la media de esta muestra es 1,253. Luego, aplicamos la fórmula:

Por lo tanto, la varianza es 0,0010

3.- Desviación típica: es la raíz cuadrada de la varianza.

Luego:

4.- Coeficiente de variación de Pearson: se calcula como cociente entre la desviación típica y la media de la muestra.

Cv = 0,0320 / 1,253

Luego,

Cv = 0,0255

El interés del coeficiente de variación es que al ser un porcentaje permite comparar el nivel de dispersión de dos muestras. Esto no ocurre con la desvación típica, ya que viene expresada en las mismas unidas que los datos de la serie.

Por ejemplo, para comparar el nivel de dispersión de una serie de datos de la altura de los alumnos de una clase y otra serie con el peso de dichos alumnos, no se puede utilizar las desviaciones típicas (una viene vienes expresada en cm y la otra en kg). En cambio, sus coeficientes de variación son ambos porcentajes, por lo que sí se pueden comparar.

16:58 0 comentarios

Medidas de Posición no Central


El número de tramos en los que se agrupa la información es una decisión que debe tomar el analista: la regla es que mientras más tramos se utilicen menos información se pierde, pero puede que menos representativa e informativa sea la tabla.
Las medidas de posición no centrales permiten conocer otros puntos característicos de la distribución que no son los valores centrales. Entre otros indicadores, se suelen utilizar una serie de valores que dividen la muestra en tramos iguales:

Cuartiles: son 3 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en cuatro tramos iguales, en los que cada uno de ellos concentra el 25% de los resultados.

Deciles: son 9 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en diez tramos iguales, en los que cada uno de ellos concentra el 10% de los resultados.

Percentiles: son 99 valores que distribuyen la serie de datos, ordenada de forma creciente o decreciente, en cien tramos iguales, en los que cada uno de ellos concentra el 1% de los resultados.

Ejemplo: Vamos a calcular los cuartiles de la serie de datos referidos a la estatura de un grupo de alumnos (lección 2ª). Los deciles y centiles se calculan de igual manera, aunque haría falta distribuciones con mayor número de datos.
1º cuartil: es el valor 1,22 cm, ya que por debajo suya se situa el 25% de la frecuencia (tal como se puede ver en la columna de la frecuencia relativa acumulada).

2º cuartil: es el valor 1,26 cm, ya que entre este valor y el 1º cuartil se situa otro 25% de la frecuencia.

3º cuartil: es el valor 1,28 cm, ya que entre este valor y el 2º cuartil se sitúa otro 25% de la frecuencia. Además, por encima suya queda el restante 25% de la frecuencia.

Atención: cuando un cuartil recae en un valor que se ha repetido más de una vez (como ocurre en el ejemplo en los tres cuartiles) la medida de posición no central sería realmente una de las repeticiones.
16:42 0 comentarios

Medidas de Tendencia Central

Las medidas de posición nos facilitan información sobre la serie de datos que estamos analizando. Estas medidas permiten conocer diversas características de esta serie de datos. Las medidas de posición son de dos tipos:


a) Medidas de posición central: informan sobre los valores medios de la serie de datos.
b) Medidas de posición no centrales: informan de como se distribuye el resto de los valores de la serie.
a) Medidas de posición central


Las principales medidas de posición central son las siguientes:


1.- Media


Es el valor medio ponderado de la serie de datos. Se pueden calcular diversos tipos de media, siendo las más utilizadas:
a) Media aritmética: se calcula multiplicando cada valor por el número de veces que se repite. La suma de todos estos productos se divide por el total de datos de la muestra:


(X1 * n1) + (X2 * n2) + (X3 * n3) + .....+ (Xn-1 * nn-1) + (Xn * nn)

Xm = -------------------------------------------------------------------------------------

n


b) Media geométrica: se eleva cada valor al número de veces que se ha repetido. Se multiplican todo estos resultados y al producto fiinal se le calcula la raíz "n" (siendo "n" el total de datos de la muestra).

Según el tipo de datos que se analice será más apropiado utilizar la media aritmética o la media geométrica.
La media geométrica se suele utilizar en series de datos como tipos de interés anuales, inflación, etc., donde el valor de cada año tiene un efecto multiplicativo sobre el de los años anteriores. En todo caso, la media aritmética es la medida de posición central más utilizada.
Lo más positivo de la media es que en su cálculo se utilizan todos los valores de la serie, por lo que no se pierde ninguna información.
Sin embargo, presenta el problema de que su valor (tanto en el caso de la media aritmética como geométrica) se puede ver muy influido por valores extremos, que se aparten en exceso del resto de la serie. Estos valores anómalos podrían condicionar en gran medida el valor de la media, perdiendo ésta representatividad.

2.- Mediana


Es el valor de la serie de datos que se sitúa justamente en el centro de la muestra (un 50% de valores son inferiores y otro 50% son superiores).
No presentan el problema de estar influido por los valores extremos, pero en cambio no utiliza en su cálculo toda la información de la serie de datos (no pondera cada valor por el número de veces que se ha repetido).

3.- Moda


El valor que más se repite en la muestra.

Ejemplo: vamos a utilizar la tabla de distribución de frecuencias con los datos de la estatura de los alumnos que vimos en la lección 2ª.




Vamos a calcular los valores de las distintas posiciones centrales:

1.-Media aritmética


(1,20*1) + (1,21*4) + (1,22 * 4) + (1,23 * 2) + ......... + (1,29 * 3) + (1,30 * 3)
Xm = ----------------------------------------------------------------------------------------------------
30

Luego:

Xm = 1,253

Por lo tanto, la estatura media de este grupo de alumnos es de 1,253 cm.

2.- Media geométrica

X = ((1,20^ 1) * (1,21^4) * (1,22^ 4) * .....* (1,29^3)* (1,30^3)) ^ (1/30)

Luego:

Xm = 1,253

En este ejemplo la media aritmética y la media geométrica coinciden, pero no tiene siempre por qué ser así.

3.- Mediana
La mediana de esta muestra es 1,26 cm, ya que por debajo está el 50% de los valores y por arriba el otro 50%. Esto se puede ver al analizar la columna de frecuencias relativas acumuladas.

En este ejemplo, como el valor 1,26 se repite en 3 ocasiones, la media se situaría exactamente entre el primer y el segundo valor de este grupo, ya que entre estos dos valores se encuentra la división entre el 50% inferior y el 50% superior.

4.- Moda
Hay 3 valores que se repiten en 4 ocasiones: el 1,21, el 1,22 y el 1,28, por lo tanto esta seria cuenta con 3 modas.

16:35 0 comentarios

Distribución de Frecuencia Acumulada

Supongamos que medimos la estatura de los habitantes de una vivienda y obtenemos los siguientes resultados (cm): Si presentáramos esta información en una tabla de frecuencia obtendríamos una tabla de 30 líneas (una para cada valor), cada uno de ellos con una frecuencia absoluta de 1 y con una frecuencia relativa del 3,3%. Esta tabla nos aportaría escasa información.

En lugar de ello, preferimos agrupar los datos por intervalos, con lo que la información queda más resumida (se pierde, por tanto, algo de información), pero es más manejable e informativa:
El número de tramos en los que se agrupa la información es una decisión que debe tomar el analista: la regla es que mientras más tramos se utilicen menos información se pierde, pero puede que menos representativa e informativa sea la tabla.
16:08 0 comentarios

Distribución de Frecuencias

La distribución de frecuencia es la representación estructurada, en forma de tabla, de toda la información que se ha recogido sobre la variable que se estudia.

Veamos un ejemplo:
Medimos la altura de los niños de una clase y obtenemos los siguientes resultados (cm):


Si presentamos esta información estructurada obtendríamos la siguiente tabla de frecuencia:

Si los valores que toma la variable son muy diversos y cada uno de ellos se repite muy pocas veces, entonces conviene agruparlos por intervalos, ya que de otra manera obtendríamos una tabla de frecuencia muy extensa que aportaría muy poco valor a efectos de síntesis.




15:01 0 comentarios

Datos Cualitativos y Cuantitativos


Datos Cualitativos: cuando los datos son cuantitativos, la diferencia entre ellos es de clase y no de cantidad.

Ejemplo:

Si deseamos clasificar los estudiantes que cursan la materia de estadística I por su estado civil, observamos que pueden existir solteros, casados, divorciados, viudos.

Datos cuantitativos: cuando los valores de los datos representan diferentes magnitudes, decimos que son datos cuantitativos.

Ejemplo:

Se clasifican los estudiantes del Núcleo San Carlos de la UNESR de acuerdo a sus notas, observamos que los valores (nota) representan diferentes magnitudes.
14:57 5 comentarios

Variables Continuas y Discretas

Una variable es un símbolo, tal como X, Y, H, x ó B, que pueden tomar un conjunto prefijado de valores, llamado dominio de esa variable. Para Murray R. Spiegel (1991) "una variable que puede tomar cualquier valor entre dos valores dados se dice que es una variable continua en caso contrario diremos que la variable es discreta".

Las variables, también llamadas caracteres cuantitativos, son aquellas cuyas variaciones son susceptibles de ser medidas cuantitativamente, es decir, que pueden expresar numéricamente la magnitud de dichas variaciones. Por intuición y por experiencia sabemos que pueden distinguirse dos tipos de variables; las continuas y las discretas

Las variables continuas se caracterizan por el hecho de que para todo para de valores siempre se puede encontrar en valor intermedio, (el peso, la estatura, el tiempo empleado para realizar un trabajo, etc.)

Una variable es continua, cuando puede tomar infinitos valores intermedios dentro de dos valores consecutivos. Por ejemplo, la estatura, el peso, la temperatura.

Para ver el gráfico seleccione la opción "Descargar" del menú superior

Ejemplo:

En el preescolar Blanca de Pérez, ubicado en la urbanización Monseñor Padilla de esta ciudad se procedió a recoger las medidas de talla y peso de los niños que a este asisten.

Niño Peso Talla

José 18,300 1,15

Julio 20,500 1,20

Pedro 19,000 1,10

Luis 18,750 1,18
Las variables discretas serán aquellas que pueden tomar solo un número limitado de valores separados y no continuos; son aquellas que solo toman un determinado números de valores, porque entre dos valores consecutivos no pueden tomar ningún otro; por ejemplo el número de estudiantes de una clase es una variable discreta ya que solo tomará los valores 1, 2, 3, 4... nótese que no encontramos valor como 1,5 estudiantes
14:54 0 comentarios

Estadística Inductiva

Está fundamentada en los resultados obtenidos del análisis de una muestra de población, con el fin de inducir o inferir el comportamiento o característica de la población, de donde procede, por lo que recibe también el nombre de Inferencia estadística.
Según Berenson y Levine; Estadística Inferencial son procedimientos estadísticos que sirven para deducir o inferir algo acerca de un conjunto de datos numéricos (población), seleccionando un grupo menor de ellos (muestra).
El objetivo de la inferencia en investigación científica y tecnológica radica en conocer clases numerosas de objetos, personas o eventos a partir de otras relativamente pequeñas compuestas por los mismos elementos.
En relación a la estadística descriptiva y la inferencial, Levin & Rubin (1996) citan los siguientes ejemplos para ayudar a entender la diferencia entre las dos.
Supóngase que un profesor calcula la calificación promedio de un grupo de historia. Como la estadística describe el desempeño del grupo pero no hace ninguna generalización acerca de los diferentes grupos, podemos decir que el profesor está utilizando estadística descriptiva. Graficas, tablas y diagramas que muestran los datos de manera que sea más fácil su entendimiento son ejemplos de estadística descriptiva.

Supóngase ahora que el profesor de historia decide utilizar el promedio de calificaciones obtenidos por uno de sus grupos para estimar la calificación promedio de las diez unidades del mismo curso de historia. El proceso de estimación de tal promedio sería un problema concerniente a la estadística inferencial.
Los estadísticos se refieren a esta rama como inferencia estadística, esta implica generalizaciones y afirmaciones con respecto a la probabilidad de su validez.
14:52 0 comentarios

Estadística Descriptiva

Tienen por objeto fundamental describir y analizar las características de un conjunto de datos, obteniéndose de esa manera conclusiones sobre las características de dicho conjunto y sobre las relaciones existentes con otras poblaciones, a fin de compararlas. No obstante puede no solo referirse a la observación de todos los elementos de una población (observación exhaustiva) sino también a la descripción de los elementos de una muestra (observación parcial).
En relación a la estadística descriptiva, Ernesto Rivas González dice; "Para el estudio de estas muestras, la estadística descriptiva nos provee de todos sus medidas; medidas que cuando quieran ser aplicadas al universo total, no tendrán la misma exactitud que tienen para la muestra, es decir al estimarse para el universo vendrá dada con cierto margen de error; esto significa que el valor de la medida calculada para la muestra, en el oscilará dentro de cierto límite de confianza, que casi siempre es de un 95 a 99% de los casos.
14:44 0 comentarios

Encuesta

Se entiende por encuesta las observaciones realizadas por muestreo, es decir son observaciones parciales.
El diseño de encuestas es exclusivo de las ciencias sociales y parte de la premisa de que si queremos conocer algo sobre el comportamiento de las personas, lo mejor, más directo y simple es preguntárselo directamente a ellas. (Cadenas, 1974).
Según Antonio Napolitano "La encuesta, es un método mediante el cual se quiere averiguar. Se efectúa a través de cuestionarios verbales o escritos que son aplicados a un gran número de personas".
14:13 4 comentarios

Variables y Atributos

Las variables, también suelen ser llamados caracteres cuantitativos, son aquellos que pueden ser expresados mediante números. Son caracteres susceptibles de medición. Como por ejemplo, la estatura, el peso, el salario, la edad, etc.

Según, Murray R. Spiegel, (1992) "una variable es un símbolo, tal como X, Y, Hx, que puede tomar un valor cualquiera de un conjunto determinado de ellos, llamado dominio de la variable. Si la variable puede tomar solamente un valor, se llama constante."

Todos los elementos de la población poseen los mismos tipos de caracteres, pero como estos en general no suelen representarse con la misma intensidad, es obvio que las variables toman distintos valores. Por lo tanto estos distintos números o medidas que toman los caracteres son los "valores de la variable". Todos ellos juntos constituyen una variable.

Los atributos también llamados caracteres cualitativos, son aquellos que no son susceptibles de medición, es decir que no se pueden expresar mediante un número.

IUTIN (1997). "Reciben el nombre de variables cualitativas o atributos, aquellas características que pueden presentarse en individuos que constituyen un conjunto.

La forma de expresar los atributos es mediante palabras, por ejemplo; profesión, estado civil, sexo, nacionalidad, etc. Puede notar que los atributos no se presentan en la misma forma en todos los elementos. Estas distintas formas en que se presentan los atributos reciben el nombre de "modalidades".

Ejemplo;

El estado civil de cada uno de los estudiantes del curso de estadísticas I, no se presenta en la misma modalidad en todos.
14:10 0 comentarios

Muestreo



Esto no es más que el procedimiento empleado para obtener una o más muestras de una población; el muestreo es una técnica que sirve para obtener una o más muestras de población.

Este se realiza una vez que se ha establecido un marco muestral representativo de la población, se procede a la selección de los elementos de la muestra aunque hay muchos diseños de la muestra.

Al tomar varias muestras de una población, las estadísticas que calculamos para cada muestra no necesariamente serían iguales, y lo más probable es que variaran de una muestra a otra.

Ejemplo;

Consideremos como una población a los estudiantes de educación del Núcleo San Carlos de la UNESR, determinando por lo menos dos caracteres ser estudiados en dicha población;


Religión de los estudiantes


Sexo.

Tipos de muestreo

Existen dos métodos para seleccionar muestras de poblaciones; el muestreo no aleatorio o de juicio y el muestreo aleatorio o de probabilidad. En este último todos los elementos de la población tienen la oportunidad de ser escogidos en la muestra. Una muestra seleccionada por muestreo de juicio se basa en la experiencia de alguien con la población. Algunas veces una muestra de juicio se usa como guía o muestra tentativa para decidir como tomar una muestra aleatoria más adelante. Las muestras de juicio evitan el análisis estadístico necesario para hacer muestras de probabilidad.
14:08 0 comentarios

Muestra

"Se llama muestra a una parte de la población a estudiar que sirve para representarla". Murria R. Spiegel (1991).

"Una muestra es una colección de algunos elementos de la población, pero no de todos". Levin & Rubin (1996).

"Una muestra debe ser definida en base de la población determinada, y las conclusiones que se obtengan de dicha muestra solo podrán referirse a la población en referencia", Cadenas (1974).

Ejemplo;

El estudio realizado a 50 miembros del Colegio de Ingenieros del Estado Cojedes.

El estudio de muestras es más sencillo que el estudio de la población completa; cuesta menos y lleva menos tiempo. Por último se aprobado que el examen de una población entera todavía permite la aceptación de elementos defectuosos, por tanto, en algunos casos, el muestreo puede elevar el nivel de calidad.

Una muestra representativa contiene las características relevantes de la población en las mismas proporciones que están incluidas en tal población.

Los expertos en estadística recogen datos de una muestra. Utilizan esta información para hacer referencias sobre la población que está representada por la muestra. En consecuencia muestra y población son conceptos relativos. Una población es un todo y una muestra es una fracción o segmento de ese todo.
14:07 0 comentarios

Población

El concepto de población en estadística va más allá de lo que comúnmente se conoce como tal. Una población se precisa como un conjunto finito o infinito de personas u objetos que presentan características comunes.

"Una población es un conjunto de todos los elementos que estamos estudiando, acerca de los cuales intentamos sacar conclusiones". Levin & Rubin (1996).

"Una población es un conjunto de elementos que presentan una característica común". Cadenas (1974).

Ejemplo:

Los miembros del Colegio de Ingenieros del Estado Cojedes.

El tamaño que tiene una población es un factor de suma importancia en el proceso de investigación estadística, y este tamaño vienen dado por el número de elementos que constituyen la población, según el número de elementos la población puede ser finita o infinita. Cuando el número de elementos que integra la población es muy grande, se puede considerar a esta como una población infinita, por ejemplo; el conjunto de todos los números positivos. Una población finita es aquella que está formada por un limitado número de elementos, por ejemplo; el número de estudiante del Núcleo San Carlos de la Universidad Nacional Experimental Simón Rodríguez.

Cuando la población es muy grande, es obvio que la observación de todos los elementos se dificulte en cuanto al trabajo, tiempo y costos necesario para hacerlo. Para solucionar este inconveniente se utiliza una muestra estadística.

Es a menudo imposible o poco práctico observar la totalidad de los individuos, sobre todos si estos son muchos. En lugar de examinar el grupo entero llamado población o universo, se examina una pequeña parte del grupo llamada muestra.
14:04 0 comentarios

Definición de Estadística


La estadística es comúnmente considerada como una colección de hechos numéricos expresados en términos de una relación sumisa, y que han sido recopilado a partir de otros datos numéricos.

Kendall y Buckland (citados por Gini V. Glas / Julian C. Stanley, 1980) definen la estadística como un valor resumido, calculado, como base en una muestra de observaciones que generalmente, aunque no por necesidad, se considera como una estimación de parámetro de determinada población; es decir, una función de valores de muestra.

"La estadística es una técnica especial apta para el estudio cuantitativo de los fenómenos de masa o colectivo, cuya mediación requiere una masa de observaciones de otros fenómenos más simples llamados individuales o particulares". (Gini, 1953.

Murria R. Spiegel, (1991) dice: "La estadística estudia los métodos científicos para recoger, organizar, resumir y analizar datos, así como para sacar conclusiones válidas y tomar decisiones razonables basadas en tal análisis.

"La estadística es la ciencia que trata de la recolección, clasificación y presentación de los hechos sujetos a una apreciación numérica como base a la explicación, descripción y comparación de los fenómenos". (Yale y Kendal, 1954).

Cualquiera sea el punto de vista, lo fundamental es la importancia científica que tiene la estadística, debido al gran campo de aplicación que posee.
13:59 0 comentarios

Estadística


La estadística es una ciencia con base matemática referente a la recolección, análisis e interpretación de datos, que busca explicar condiciones regulares en fenómenos de tipo aleatorio. Es transversal a una amplia variedad de disciplinas, desde la física hasta las ciencias sociales, desde las ciencias de la salud hasta el control de calidad, y es usada para la toma de decisiones en áreas de negocios e instituciones gubernamentales.

La Estadística se divide en dos ramas:

La estadística descriptiva, que se dedica a los métodos de recolección, descripción, visualización y resumen de datos originados a partir de los fenómenos en estudio. Los datos pueden ser resumidos numérica o gráficamente. Ejemplos básicos de parámetros estadísticos son: la media y la desviación estándar. Algunos ejemplos gráficos son: histograma, pirámide poblacional, clusters, etc.
La inferencia estadística, que se dedica a la generación de los modelos, inferencias y predicciones asociadas a los fenómenos en cuestión teniendo en cuenta la aleatoriedad de las observaciones. Se usa para modelar patrones en los datos y extraer inferencias acerca de la población bajo estudio. Estas inferencias pueden tomar la forma de respuestas a preguntas si/no (prueba de hipótesis), estimaciones de características numéricas (estimación), pronósticos de futuras observaciones, descripciones de asociación (correlación) o modelamiento de relaciones entre variables (análisis de regresión). Otras técnicas de modelamiento incluyen ANOVA, series de tiempo y minería de datos.